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Dynamos driven by poloidal flow exist 

J. J. Love &: David Gubbins 

Department of Earth Sciences, University of Leeds, United Kingdoan 

Abstract. We have discovered a class of dynamos 
driven by purely poloidal fluid motion, thereby demon- 
strating that toroidM motion is not essential for dynamo 
action and that there is no counterpart to the anti- 
dynamo theorem that purely toroidal motions cannot 
generate magnetic fields. The fully three-dimensional 
(3D) dynamo action of these models results from the 
pushing and twisting of magnetic field lines by heli- 
cal motion in a manner akin to the t• 2 mechanism of 
mean-field electrodynamics, No dynamo with dipole 
symmetry was found for an axisymmetric distribution 
of hellcity; indeed, some azimuthal variation in helicity 
is required. Among the suite of dynamos that we have 
investigated, the poloidM flow dynamo with the small- 
est critical magnetic Reynolds number is very nearly the 
dynamo with the most nonaxisymmetric distribution of 
helicity. 

Introduction 

Dynamo action in the Sun and the Earth is sustained 
by the motion of electrically conducting fluid. In a kine- 
matic dynamo analysis, such as that discussed here, one 
investigates the types of fluid motion which sustain dy- 
namo action by solving the magnetic induction equa- 
tion, 

OrB ---- RmV X (U X B)•- V2B, (1) 
where B denotes the magnetic field and u is the dimen- 
sionless fluid velocity. The magnetic Reynolds number, 
R,•, gives a measure of the effectiveness by which fluid 
motion acts to amplify the magnetic field compared to 
diffusive decay due to electTical resistance. 

Early work on the dynamo resulted in some negative 
results, the so-cMled anti-dynamo theorems; the most 
famous being that due to Cowling [1934], who showed 
that fluid motion:' cannot generate ax!symmetric mag- 
netic fields, a result which holds for time-dependent 
fields and time-dependent compressible fluids [Hide and 
Palmer, 1982]. And recently it has been shown that 
fluid motion cannot sustain purely toroidal magnetic 
fields [Kaiser, Schmitt and Busse, 1994]. In addition 
to theorems concerning the magnetic field are theo- 

rems concerning the nature of the velocity field. El- 
sasset [1946] and Bul!ard and Gellman [1954] showed 
that poloidM motion is essential for dynamo action, i.e. 
that toroidM motion alone is insufficient to sustain a 

magnetic field, some radial poloidal motion is necessary. 
Other analyses have bounded the minimum amount 
of radial motion necessary for dynamo action [Busse, 
1975], and have bounded the minimum size of the mag- 
netic Reynolds number [Backus, 1958; Childtess, 1969; 
Proctor, 1977]. Our discovery of dynamo action sus- 
tained by purely poloidM motion demonstrates that 
there is no counterpart to the toroidM flow anti-dynamo 
theorem. 

Method 

We consider a conducting fluid sphere surrounded by 
a stationary electrical insulator. Equation (1) is then 
solved by the Bullard-Gellman method [Bullard and 
Gellman, 1954]: discretizing the equation by expanding 
both the velocity field and magnetic field in terms of 
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Figure 1. Poloidal fluid velocity components: (a) 
meridional section showing streamlines of meridional 
circulation, sø•, (b) equatorial section showing stream- 
lines of convective motion, s• s + s• 2c. 
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Figure 2. (a) Critical magnetic Reynolds number, R•, 
as a function of the ratio of meridional motion to con- 

vective motion, q/e2. Model (.9 is the dynamo with 
smallest R•. (b) The average helicity, (h) 2, and the 
nonaxisymmetric helicity, (h.)•a, as a function of •/•2. 
Note that model (.9 is very nearly the model of maximal 

NA" 

toroidal and poloidal vector harmonics and radial grid 
points. For a prescribed velocity field, u, the induction 
equation is reduced to an algebraic eigenvalue problem. 
Standard numerical techniques are used to solve for the 
magnetic field, B, and the critical magnetic Reynolds 
number, R•,, at which dynamo action occurs. R• is de- 
fined so that (u) = 1, where (...) denotes a volumetric 
RMS average. 

Kumar and Roberts [1975] found numerically conver- 
gent magnetic fields sustained by a flow of the form 

u- ø + + + (2) 

where {e0, e•, ½2} are adjustable parameters. Toroidal 

motion, t• ø, is differential rotation, whilst the poloidal 
component, %0, is meridional motion which has been 
found to promote steady solutions in ctw-dynamos [Rob- 
erts, 1972]. The sectoral polotrial harmonics, s22s and 
s22c, contribute convective overturning with nmlti-cellular 
motio n three-deep along the radius. In Fig. 1 we show 
the form of %0 and s2a s + s22c. 

Previous studies using (2) addressed the Braginsky 
limit, ½0 -• oc, and thus were concerned with dynamo 
action dominated by differential rotation [Kumar and 
Roberts, 1975]. In this study we fix ½0 equal to zero, 
and therefore restrict ourselves to purely polotrial mo- 
tion; we explore dynamo action by varying the rela- 
tive proportion of meridional and convective motions 
as measured by the ratio ½•/e2. We search for magnetic 
fields with dipole symmetry, i.e. antisymmetric upon 
reflection through the equatorial plane, as is geophysi- 
cally and hellophysically relevant. 

Results and Discussion 

A suite of steady poloidal flow dynamos were found. 
All are dominated by strong meridional motion, with 
negative ½•, meaning that the sense of the meridional 
motion is one of upwelling along the equator and down- 
welling along the geographic poles. The critical mag- 
netic Reynolds number, R•, as a function of ex/e2, is 
shown in Fig. 2a. Dynamo efficiency is optimum for 
model (9, where the magnetic Reynolds number attains 
a minimum, R•m ___ 44 for e•/e2 -6. 

The magnetic field of (,9 is shown in Fig. 3, where 
it is revealed that meridional motion promotes the sus- 
tenance of poloidal axisymmetric fields; for the opti- 
mum dynamo 80% of the magnetic energy is axisym- 
metric and 78% is poloidal. The surface field of (.9 
is extremely simple, Fig. 3b, consisting of two flux 
patches concentrated near the geographic poles, the re- 
sult of strong meridional motion, which sweeps poloidal 
magnetic field lines towards the poles and concentrates 
them by fluid downwelling. The magnetic field is fairly 
complicated in the fluid interior, Fig. 3c,e,f, but the 
azimuthally averaged field, Fig. 3a,d, is large scale and 
does not strongly reflect the underlying multi-cellular 
convective flow. The numerical convergence of (.9 is ver- 
ified by comparing magnetic spectra for two different 
truncations of harmonic expansion; Fig. 4. 

In mean-field electrodynamics [Steenbeck, Krause and 
Riidler, 1966], ct regeneration of magnetic field results 
from the average induction sustained by short length- 
scale helical motion. Our dynamo models are fully 3D, 
there has been no averaging and they are not mean- 
field dynamos. However, it is instructive to consider 
the dynamo action of our models in terms of helicity, 
h = u. (V x u), and its regenerative effects [Parker, 
1979]. Helicity arises from the cross products of pairs 
of velocity harmonics. The convective terms s22s and s22c 
generate only axisymmetric helicity, Ih}as, whilst the 
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Figure 3. The magnetic field for model (.9: (a) meridional section showing azimuthally averaged magnetic field 
lines, (b) satellite view showing contours of B,,, (c) equatorial section showing contours of Bo, (d) meridional 
section showing azimuthally average contours of B,, (e) meridional section showing contours of B, at longitude 
•b - 0, (f) meridional section showing contours of B, at longitude •b - 90. 

meridional circulation s• ø combines with each convective 
term to give nonaxisymmetric helicity, (h}NA, varying 
in azimuth as sin 2•b, see Pig. 5. 
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l*igure 4. Magnetic energy of (.9 as a function of spheri- 
cal harmonic degree. The dashed (solid) line represents 
the spectrum of the magnetic field calculated with a 
spherical harmonic expansion truncated at degree 16 
(28). The energy decreases with increasing harmonic 
degree, and since the models are adequately converged, 
the inclusion of higher degree terms, those above degree 
16, has little effect on the overall solutions. 

No dipole-symmetric dynamo was found with ex = 0, 
the case of axisymmetric helicity, /h)NA -- 0, and no 
dipole-symmetric dynamo is sustained for e2 - 0, the 
case of no helicity, {h) = 0. Interestingly, the most 
efficient of our dynamo models, that with the small- 
est R•, model (9, is the dynamo with very nearly the 
largest /h)•, see Fig. lb. This result indicates that 
the nonaxisymmetric distribution of helicity is an im- 
portant constituent in dynamos with dipole symmetry. 
That the spatial arrangement of helicity is an important 
factor in dynamo efficiency has been reported previously 
[Love and Gubbins, 1996]. 

In mean-field theory, a is proportional to the mean 
helicity and for an a 2 dynamo one might expect the 
most efficient dynamo would be the one with the largest 
(h)•s. However these dynamos are macroscopic, and 
although they do not possess any toroidal differential 
rotation and appear to operate through a mechanism 
somewhat akin to the a 2 mechanism, they are fully 3D 
and thus helicity cannot be simply related to a gener- 
ation. Axisymmetric helicity distorts field lines uni- 
formly around the axis, which subsequently leads to 
cancellation rather than reinforcement of the preexist- 
ing field. In these dynamos cancellation is reduced by 
the meridional circulation, which imparts an azimuthal 
variation to the helicity, (h)•, and an azimuthal varia- 
tion in magnetic regeneration as required by Cowling's 
theorem. It is this 3D induction, not the helicity itself, 
which, when spatially averaged, gives a net a-effect. 
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Figure 5. Contours of helicity for model O in merid- 
ional sections: (a) azimuthally averaged helicity, (b) 
helicity at longitude 05 = 0, (b) helicity at longitude 
05 = 90. 
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